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Abstract. The local distortion of a quantum scalar field 6 by isolated point and (straight.) 
line boundaries is sludied using simple image-charge coytructions. Non-zero temperah is 
considered. The distortion (away from uniformity) of he @ virtual-particle sea and thermal gas 
by these boundaries is calculated exactly. Periodic arrays of point and line boundaries are as 
easily dealt with. 

1. Introduction 

In quantum field theory a spatial boundary surface am on which the quantum field 4 
must satisfy some specific boundary condition (say C$ = 0 or 3 ~ 4  = 0) is qualitatively 
distinguished from all locations in space where 4 satisfies no such condition. The presence 
of am causes the 4 vacuum or virtual-particle sea (which in free spacetime would of course 
be uniform) to become non-uniform-literally a function of the distance to am [l-161. 
Far from am the quantum field and its vacuum are practically what they would be in 
free space. However, the distortion of 4 and its vacuum increases without limit as the 
boundary is approached. This is clearly revealed by the 4 local quantum functions; e.g. the 4 vacuum energy density. A local vacuum function having dimension (mass)d will, barring 
cancellations, diverge like as the distance = 6 to am goes to zero [1-16]. In the past 
not all workers have viewed these boundary divergences as physical. However, they are 
physically meaningful. Their role is to express in mathematical terms the vacuum distortion 
caused by the boundary, which as already mentioned increases without limit as 6 -+ 0. 

In this paper we investigate the distortion of a scalar field 4 by isolated point and line 
boundaries on which 4 is constrained to satisfy specific (Dirichlet or Neumann) boundary 
conditions. To the author's knowledge these problems have not previously been investigated. 
They are easily solved by simple image-charge constructions of the appropriate heat kernels. 
Because not everyone is familiar with boundary divergences, we briefly review some 
comparable results for planar boundaries. 

For a planar boundary am constraining a massless quantum field 4, simple dimensional 
arguments predict the form boundary divergences must have. In four spacetime dimensions 
~31 

where 6 is the perpendicular distance from the field point to am. Of course the 
dimensionless constants C,*z have to be computed. One finds C1 = -Cz = 4~(4x)-~ 
for Dirichlet/Nenmann conditions. In free spacetime these constants must vanish because 
there is no dimensional parameter available in terms of which functions like (Too(=)) and 
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(&s)[~) can be expressed. However, the introduction of am makes available the length 6 
in terms of which these vacuum functions can be expressed. Almost inevitably, boundary 
divergences appear. Non-zero mass modifies but does not eliminate the behaviour (1.1). 
Cancellation seems to be the only way for boundary divergence nor to be present in quantum 
field theory. For an electromagnetic field excluded from half of space by a planar metallic 
boundary, the boundary divergences of the electric and magnetic sectors exactly cancel 
[l,  21. However, as soon as the metal plane is given curvature, this cancellation stops being 
perfect [3]. 

The argument leading to equations (1.1) assumed the planar boundq  am is infinitely 
far from any other spatial structure. Then there is no global Casimir effect. A second 
parallel boundary a finite distance L away would complicate the argument by introducing 
the constant length parameter L .  A second boundary of any shape introduces at least one 
such parameter. In situations like these, boundary divergences are still present. Moreover, 
they contribute to the global Casimir effect [14,1S]. One expects a global vacuum energy 
shift whenever a global length parameter is available. (There are exceptions to this, however, 
as discussed in section 4.) 

In section 2 we discuss the simplest boundaries having cylindrical and spherical 
symmetry. These are straight-line boundaries and point boundaries, which one can regard 
as R + 0 limits of circular cylinders and spheres of radius R .  To do the R z 0 problems 
completely one would need a complete set of quantum modes appropriate for each. These 
modes contain Bessel function factors, making local mode-sum calculations more elaborate 
than the relatively simple ones for rectangular boundary geometry. Fortunately these local 
calculations are manageable. (See 11 1,121 for explicit local analysis of spherical cavities, 
and also the global calculations [17-19].) Local analysis for circular cylinder geomehy 
seems to be lacking. (See, however, [20] for a detailed global calculation.) 

Consider the Casimir problem in the space exterior to vanishingly small isolated circular 
cylinders and spheres, on whose surfaces the modes of a massless scalar quantum field 6 
must satisfy either Dirichlet or Neumann conditions. Because R is not available we have 
again a situation like the one leading to equations (1. I); the only length parameter available 
is the distance r from the line or point boundary to field point x. Thus 

(1.2) 
BI Bz (GI" = - 
r4 

(I6(~)l2) = 7.. . 
where Bl,2 are the dimensionless constants which must be computed. While this can be 
done by means of explicit mode sums (as will be shown elsewhere) the answer can be 
obtained far more easily using simple image-charge arguments (which effectively perform 
mode sums) to construct the exact spatial heat kernels (zl exp(tA)ly) for the problems 
considered. 

Calculations in this paper are done by the local <-function method-the version 
described in [16] for Euclidean spacetime. Once (aclexp(rA)lz) is known, it is 
straightforward to evaluate the local energy density of the vacuum and various other vacuum 
functions. Fjrst one calculates the local [-function for the zero-point fluctuations of the 

non-zero mass M and temperature T this <-function is 

where fl  = 1/T and f i  is an arbitrary mass parameter. Henceforth we set f i  = 1 because 
it plays no role in  this paper. The square bracket in equation (1.3) is the factor in the 
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heat kernel representing no, the imaginary time direction. The sum E, expresses the 
discreteness of the nos conjugate momentum ko for T > 0. In the limit T -+ 0 the square 
bracket approaches unity, which corresponds to ko becoming continuous. The <-function 
Z,,(sle) is the T-independent pad of equation (1.3) and it represents the virmal particle 
sea of the quantum field. The effective potential density of this sea is 

d 
ds Lsea(Z) = - - z s e a ( ~ l ~ ) l $ &  (1.4) 

The T-independent part of the Casimir effect resulting from the distortion of the virtual sea 
is described entirely in terms of L&c). The function E[=(sIz) (which is not a <-function) 
is entirely T-dependent. It represents the thermal gas associated with the T t 0 scalar field. 
In the limit T + 0 this function vanishes. From it one obtains the thermodynamic potential 
den& of the thermal gas 

j ;%ax). (1.5) 

(16(dIZ) = Zdlb). (1.6) 

d 
ds gas 

L&(z) E --E8 ( ~ l ~ ) l ~ = o  S2 = -P V = d XL 

Another vacuum function it is interesting to consider is (see also [6, 151) 

2. Isolated line and point boundaries 

The simple image-charge device employed here for line and point boundaries must have 
occurred to others previously. It is, however, not standard. Image charges are typically 
used one-dimensionally to implement boundary conditions on planes, or in two and three 
dimensions to do the same on cylindrical and spherical surfaces. The author has not seen 
them used to implement boundary conditions on isolated lines and points, as will be done 
here. 

To begin, let us recall the form of the heat kernel of the Laplace operator (-A) on flat, 
boundatyless n-dimensional space E"; 

(2.1) n/2 -(z-g]'/4t kn(tlz - y) = k,(tly - e) = (zlerAly) = (4xt)- e 
Because 

( - ~ ~ ) k " ( t l z  - y) = -a/atk,(iiz - 3) = [,: - - (~;25/)z]k"(t/z-Y) 

k, satisfies the heat equation (-A,+a/at)k,(t(o-y) = 0. It therefore represents a process 
of diffusion during a (fictitious) 'proper time' interval t from source point y to field point 
z through flat, boundaryless space E". In more general language the heat kernel is 

(xle-IA l y )  = e-'*. ~ , ( n ) G ~ ( y )  (2.2) 
m 

where A*,(x) = LY, (x )  is the eigenvalue problem for some operator A defined on a 
manifold M. The heat kernel's main virtues result largely from the absolute and uniform 
convergence of the mode sum (2.2) for f > 0. This enables (xIexp(-tA)ly) to satisfy 
exactly the same boundary conditions as do the individual modes Y,,,(x). Being a solution 
of the heat equation, the function (2.2) represents some kind of diffusion process hough  
M from y to x in proper time t. If one is  able to construct a heat kernel satisfying the 
correct heat equation and boundary conditions, then one has the correct heat kernel. 

Concerning equation (2.1), note that k . ( t l z  * y t C )  satisfies for any constant vector 
C the heat equation (-Ax 4- a/ar)k. = 0. This will be very important for our later use of 
image charges. 



5740 A A Actor 

Now let us imagine spacetime being Euclidean and N-dimensional, E" = E"1 x E"' 
with N = n ,  +nz. Integer nl will represent a number of free. unbounded dimensions while 
n2 will be a number of dimensions in which we assume a point boundary at the centre. 
Thus, for line and point boundaries in N = 4 dimensional spacetime, nl = 2, nz = 2 and 
nl = 1 ,  nZ = 3 respectively. However, one can just as easily calculate with arbitrary ~ 1 . 2 ,  

and why not do so? Heat kernels on factorized spaces themselves factorize, and so for E N  
with no boundaries 

2.1. Dirichkt point at zz = 0 

In E"' free conditions are assumed and the modes are just plane-wave factors with 
continuous momentum. In E"' the modes are assumed to vanish at x2 = 0. There are 
no other boundary conditions. The heat kernel must vanish at z~ = 0 or y2 = 0 with no 
other boundary conditions. It is 

(xle'Alyb = k n , ( c b i  - yi)[knl(rb~ - 32) - kn,(t122 -I- ydl 12.4) 

which clearly has the correct boundary behaviour. From our previous discussion the function 
(2.4) is also clearly a solution of the Laplace operator's heat equation. Equation (2.4) is 
much like the image charge construction of the heat kernel for a field confined Po half of 
space by a Dirichlet plane. (This problem corresponds, in N = 4 dimensions, to nl = 3, 
n2 = 1.) What occurs in E"' is diffusion from a positive source at yz toward field point 
xZr together with diffusion from a negative source at -y2. The result is a heat kernel with 
vanishing behaviour at the midway point xz = 0 rather than vanishing behaviour on the 
plane midway between the sources. 

To obtain physical quantum densities we set x = y: 

(xlerAlx)o = ( 4 ~ t ) - ~ I ~ [ l  - rz = xz. 2 2 .  (2.5) 

The term ( 4 ~ t ) - ~ / *  represents the uniform free spacetime contribution of equation (2.3). 
We are much more interested in the boundary part, whose term in equation (1.3) is 

In equation (2.6a) we use 

r"r(-s) = dttS-le-rz/r (2.7) 

2(Mfr)SK-,(2Mr) = dt zs-1e-rM2e-rz/1. (2.8) 

Im 
while equation (2.6b) is an integral formula for the modified Bessel function K,(z): 

bm 
Analytic continuation is manifest in equations (2.6)-(2.8) and will be taken for granted. 
Note that &(SIX) has none of the properties of a true (-function It is just being treated 
like one notationally. 
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From Z~(s1x) we obtain the effective action density or vacuum energy density (1.4); 

M=O (2.9a) 

where, incidentally, in N = 4 dimensions the uniform free-spacetime term is /& = 
( ~ 2 / 4 n ) Z [ l n ( ~ / p )  - $1. 

For the thermal gas from equation (1.3) one finds 

Then from equation (1.5) the thermodynamic potential density can be written down. 
Equation (1.6) provides the vacuum expectation value 

(\'$(=)I2) - (l'$lz)fm ZB(1lz) + E[as(l\%) (2.11) 

which also need not be written out separately. 

2.2. Neumann point at xz = 0 

In E"' free conditions are still assumed, while in E"' we now require the modes Yk(x2)  
to satisfy Neumann conditions at 2 2  = 0 V2Yzm(z2) vanishes at xz = 0. There are no 
other boundary conditions. The appropriate heat kernel is 

(x le '* lh  =kn,(tlzt -~l)[k,,(fl~~ - YZ) +k,(rl=z +YZ)I. (2.12) 

Checking the boundary condition one readily verifies 

1 
2f V ~ l k , O l r - ~ ) + k ~ ( t l ~ + ~ ) l  = --l(s-Y)kn(tl=-Y)+ ( ~ + ~ l ) k n ( f b + ~ ) I  

which vanishes at x = 0 as it should. The diagonal heat kernel is now 

(xlerAly)N = (4xt)-Nfl[1 +e-rz/r 1 (2.13) 

and the only difference between this and the Dirichlet one (2.5) is the different sign of the 
r-dependent term. Consequently equations (2.6). (2.9)<2.11) with this sign change give 
the local Casimi~ and thermal gas results for a Neumann point boundary. 

2.3. Three spatial dimensions 

Because of their particular interest we write out the N = 4 cases separately for Dirichlet 
conditions. The boundary line lies along the x,-axis. The boundary point is positioned at 
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e = 0. For the line rz = x: + x: and for the point r2 = x: i x: i x:. The local Casimir 
and thermal gas results are 

(2.14a) 

(2.146) 

M = O  (2.150) 

M > 0 (2.156) 

M = 0 (2.164 

Note in equation (2.14) the divergence +(4nrz)-’ as r + 0 for M zero or non-zero. 
Similarly, the vacuum value (2.16) behaves like -(4rr)-’ as r + 0. Note also that 
&(z) + -7r2T4/45 as r -+ 03 which is the Stefan-Boltzmann law for a massless scalar 
T z 0 gas. For M > 0 the ‘massive Stefan-Boltzmann law’ is what remains at large r in 
equation (2.156). Similarly the thermal expectation value of is what remains on the 
right in equation (2.16) for larger. 

3. More on line boundaries 

Non-trivial variants of the preceding results for isolated line boundaries are easily obtained. 
One assumes, for a long line boundary, free conditions in the direction of the line. Instead 
one may assume some other boundary condition. This does not interfere with the image- 
charge construction enforcing boundary conditions on the line. A variety of systems can 
be constructed by choosing Dirichlet or Neumann conditions on the line, and perpendicular 
to this direction Dirichlet or Neumann conditions on planes, or periodic conditions, or 
something else. Explicit local Casimir and thermal gas results are easily obtained. For 
brevity we shall not write out most of these, but only indicate how derivations proceed. 

To implement Dirichlet conditions in direction .x at x = 0, L the factor 
(4nt)-’/2exp[-(x - y)’/4t] in the heat kernel representing free conditions is replaced 
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which vanishes at x = 0. L or y = 0, L as it should. For Neumann conditions one uses 
instead 

3, c, vanishes at x = 0, L and similarly ay EN = 0 at y = 0, L. Equations (3.1). (3.2) 
reduce, in the limit L + 00, to the factors appropriate for isolated Dirichlet and Neumann 
planar boundaries at x = 0. 

Let us position an isolated Dirichlet boundary coincident with the (xlxZ)-plane at xg = 0, 
and along the xg-axis a Duichlet line. The diagonal heat kernel (2.5) with N = 4 is replaced 
bY 

(z1e'"lz) = ( 4 ~ t ) - ~ [ 1  - e-'*/'][I -e-':/'] (3.3) 
where r2  = xf + xz .  Equation (2.14~) for A4 = 0 becomes 

Equation (2 .154 becomes 

-[r2 + x: + ( ~ s / z ) ~ I - ~ I .  (3.5) 
For a Neumann line (plane) all terms containing 4x3) change sign. If there are two planes 
perpendicular to x3 one obtains exact results using the factors (3.1) or (3.2) in place of the 
x3-dependent factor in equation (3.3). All variants including non-zero mass can be written 
down almost by inspection. 

4. Periodic arrays of line and point boundaries 

A simple extension of the construction for isolated line and point boundaries leads to exact 
local Casimir and thermal gas results for periodic arrays of such objects. These periodic 
arrays need not be rectangular; indeed they can be quite arbitrary arrangements characterized 
by arbitrarily many different (and individually arbitrary) vectors. The local distortion of 
the quantum field by such an array is clearly very complicated. Nonetheless, for symmetry 
reasons, there is no global Casimu energy shift for these systems. 

4.1. Periodic arrays ojparallel line boundaries 

Generalizing the heat kernel (2.4) with nl.2 = 2 for an isolated Dirichlet line boundary 
(chosen to lie along the x3-axis), let us introduce an arbitrary vector A lying in the ( ~ 1 x 2 ) -  
plane. The heat kemel 
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vanishes when either of 3: or y equal mA, where -CO < m < CO runs over all integers. 
Clearly this heat kernel represents an infinite periodic linear lattice of points in the (~1x2)- 

plane at z = aA, a = integer. These are points where an array of parallel equally-spaced 
Dirichlet lines puncture this plane. In three dimensions the scalar field vanishes om all of 
these lines. 

The local Casimir and thermal gas description of this periodic array of parallel Dirichlet 
lines is obtained by inserting (4.1) in place of (el exp(rA)lx) in equation (1.3). The results 
are just a sum over individual line boundaries, each contribution like equations (214)-(2.16) 
but centred at a different lattice point. For example, equation (2.14~) becomes 

It is interesting that the exact local results (4.1), (4.2) can be extended from a single 
vector A to an arbitrary number of vectors A I ,  AI,. , . , A N  all lying in the (xlx~)-plane. 
Just replace aA in equations (4.l), (4.2) by Q ~ A ]  + azA2 4- . . . and sum individually 
a , ,  a2, , . . over all integers. The resulting mathematics represents for N = 2 a doubly- 
periodic arrangement of parallel line boundaries, and for N > 2 more complicated kinds of 
periodic arrays. 

4.2. Periodic array of Dirichlet points 

Generalizing the heat kernel (2.4) with nl = 1, nz = 3 for an isolated Dirichlet point. we 
introduce an arbitrary three-dimensional vector B. The heat kernel 

m 
(4nr)-3/2 [e-(bB+z-u)’/41 - e-(bB+ztu)’/4f 1 (4.3) 

b=-m 

vanishes at all points x = m B  where m is any integer. Clearly it represents a 
periodic infinite line array of Dirichlet points at which the scalar field vanishes. The 
formula corresponding to equation (4.2) is obvious. Indeed, all of the generalizations of 
equations (2.14)-(2.16) are easily obtained for the periodic array under discussion. 

Equation (4.3) can be extended from an infinite periodic line array to an arbitrary periodic 
array characterized by N arbitrary three-dimensional vectors B1, B2.. , .. Just replace bB 
by blBl + b2Bz + . . . and sum bl, b2, . . . individually over all integers. 

One knows that a global Casimir force acts between two parallel planar boundaries. 
Presumably there exist such forces between parallel line boundaries, and between two point 
boundaries. The preceding results for infinite periodic arrays unfortunately do not tell us 
much about the Casimir force between two objects within the array. The reason is, the 
global Casimir effect vanishes for these arrays. There are at least two ways to understand 
this. 

Consider the parallel line array. Any line will experience equal and opposite Casimir 
forces from both sides, and therefore be in equilibrium. If the array were pulled apart 
uniformly4.e. if A + AA with h > 1 and increasing-then every line remains in 
equilibrium. No work is done. Conversely, beginning with A = CO, all lines are at 
infinity except the one at (0.0). Reducing I from its initial large value down to A = 1 
will reconstruct the lattice, at no cost in energy. 

A less elementary way to understand why the infinite array has no global Casimir effect 
is to observe that the result (4.2) for Lc,,(z) is simply the sum of individual line boundary 
functions over the entire array-nothing more. In the language of [14,15], t,, = tB is 
entirely ‘boundary’, with t,-. = 0. When this is the case there is no global Casimir effect. 
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The comments just made about line arrays obviously extend to point arrays. This need 
not be discussed separately. 

An infinite periodic array ofparallel planar boundaries also has no global Casimu effect. 
Any two planes experience a mutual force. However, due to left-right symmetry, the net 
force on any plane is zero. 

Whether one is considering a periodic array of points, lines or planes, it is clear that 
if just one object of the array were displaced, global Casimir forces on it and every other 
(not too distant) element of the array would come to life. Would these forces try to restore 
periodicity? This is one of many unexplored problems in Casimu theory. 

Besides the Casimir effect there is also the thermal gas to consider. In equation (1.3), 
E&[z)  satisfies for any s the same boundary conditions as does (zlexp(tA)[r). Thus 
L&(x) and other local quantum functions characterizing the gas will vanish as any Dirichlet 
boundary is approached [16]. A Dirichlet boundary makes a hole in the gas, much as it 
makes a hole in the virtual sea. The vanishing of the right side of equation (2.15) at r = 0 
illustrates this for an isolated point or line. Arrays of point and line boundaries compel the 
gas to vanish at every point or line in the array. The gas is highly non-uniform. 

5. Conclusion 

Imagine a quantum field with some number of boundaries am,, a m z , .  . . immersed in this 
field, constraining its modes. Each boundary is an intrinsically classical object. However, 
each boundary's distortion of the quantum field is quantum in nature. One might view 
(aml+ its vacuum distortion), ( h z +  its vacuum distortion),. , .each as quantum 'objects'. 
Casimir theory is really the theory of such objects and how they interact with one another via 
the quantum field in which they exist. An array of metallic point, line or surface boundaries 
immersed in the quantum electromagnetic field would be such a system. These objects all 
interact through the electromagnetic field-not pairwise, but rather as a complicated many- 
body interaction. Casimir theory in fact originated [21] as an attempt to understand how 
atoms and structures built up from atoms (modelled as metal or dielectric objects) interact 
with and through the quantum electromagnetic field pervading all of space. This is surely 
a deep and interesting problem. 

In this article the quantum electromagnetic field has been replaced by a quantum scalar 
field 4, and metal has been replaced by Dirichlet or Neumann boundaries. Our emphasis was 
on point and line boundaries and the distortion these cause in the 4 virtual particle sea and 
(for T > 0) thermal gas. New results for isolated point and line boundaries were obtained 
by a simple method. These calculations extend easily to infinite periodic arrays which, by 
symmetry, have no global Casimir forces. Corresponding results for other quantum fields 
should not be more difficult to obtain, but were not discussed here. 

One would like to know more, of course. For example, how do two point boundaries 
interact? How do two line boundaries interact, or a point boundary with a line boundary? 
None of these two-object problems has yet been solved. Beyond these, there are more 
difficult many-body Casimir problems to investigate. Efforts to obtain at least approximate 
results for some of these systems are in progress. 
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